
15. OPTIMIZATION AND DESIGN 

Abstract — The covariance matrix adaptation evolution 
strategy (CMA-ES) is considered to be one of the most 
powerful and robust evolutionary algorithms for real-valued 
optimization with many successful applications to 
engineering problems. In this paper, the suitability of the 
classical CMA-ES and a novel CMA-ES using a diversity-
guided step-size tuning (DCMA-ES) for electromagnetic 
design is tested on the TEAM workshop benchmark problem 
22 and Loney’s solenoid benchmark problem and results are 
compared with standard and advanced metaheuristics.  

I. INTRODUCTION 
The increasing need of highly efficient electromagnetic 

devices has inspired engineers to explore the performance 
and robustness of available optimization algorithms. Recent 
advances in bio-inspired metaheuristics, supported and 
encouraged by continually increasing power and speed of 
computers, make evolutionary algorithms, such as genetic 
algorithms, evolutionary programming, differential 
evolution, and evolution strategies and related techniques 
an attractive alternative for the optimization of 
electromagnetics devices.  

In this context, some novel promising approaches 
related to Evolution Strategies (ES) have been recently 
proposed. While ES for real-valued optimization usually 
rely on Gaussian random variations. Appropriately adapting 
the covariance matrices of these mutations during 
optimization allows a form of learning and results in a 
variable metric for the search distribution. One of such 
techniques, the covariance matrix adaptation evolution 
strategy (CMA-ES) [1],[2] is considered state-of-the-art in 
ES.  

In this paper, the performance of the classical CMA-ES 
and a novel CMA-ES using a diversity-guided step-size 
tuning (DCMA-ES) are tested on two well-known 
electromagnetic benchmark problems, namely the TEAM 
workshop benchmark problem 22 and Loney’s solenoid 
benchmark problem. Furthermore, the performance of both 
methods is compared with that of other metaheuristics 
presented in the recent literature. 

II. FUNDAMENTALS OF CMA-ES   
The CMA-ES is an evolution strategy which adapts the 

full covariance matrix of a normal search (mutation) 
distribution. Compared to many other evolutionary 
algorithms, an important property of the CMA-ES is its 
invariance against linear transformations of the search 
space. 

The (µ/µw,λ)-CMA-ES samples λ new candidate 
solutions and selects the µ best among them. These 
contribute in a weighted manner to the update of the 
distribution parameters. The algorithm is non-elitist by 
nature, but a practical implementation will preserve the 
best-ever evaluated solution. A detailed description of 
CMA-ES and the proposed DCMA-ES will be given in the 
extended version of the paper. 

III. CASE STUDIES   
A. Loney’s solenoid design problem 

Loney’s solenoid design problem consists in 
determining the position and size of two correcting coils in 
order to generate a uniform magnetic flux density within a 
given interval on the axis of a main solenoid. The problem 
is described by two degrees of freedom (the separation s 
and the length l of the correcting coils) with box bounds 
(see Figure 1) [3].  

 

 
Fig. 1. Axial cross-section of Loney’s solenoid (upper half-plane). 
 
Three different basins of attraction of local minima can 

be recognized in the domain of F with values of F > 4·10-8 

(high level region: HL), 3·10-8 < F < 4·10-8 (low level 
region: LL), and F < 3·10-8 (very low level region - global 
minimum region: VL). The very low level region is a small 
ellipsoidally shaped area within the thin low level valley.  

 
B. TEAM workshop problem 22 

The TEAM workshop problem 22 considers the optimal 
design of a superconducting magnetic energy storage 
(SMES) device in order to store a significant amount of 
energy in the magnetic field with a fairly simple and 
economical coil arrangement which can be rather easily 
scaled up in size. The benchmark consists in a continuous, 
constrained, eight-parameter problem, shown in Fig. 2, and 
further details can be found in [4].  
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Fig. 2. Degrees of freedom of TEAM workshop problem 22. 

 
It should be noted that here, as well as in [5], the 

objective function is defined as: 

                         (1) 

where the reference stored energy and stray field are Eref= 
180 MJ, Bnormal = 200 µT, and w = 100 is a penalty factor 
which is used in order to make the stray field and energy 
terms error of roughly the same magnitude (this is a 
deviation from the original benchmark problem definition 
in which w=1.0).  in (3) is defined as: 

                   (2) 

where is evaluated at 22 equidistant points along 

the lines a and b of Fig. 2. 

IV. OPTIMIZATION RESULTS   
The stopping criterion adopted was 1,500 and 4,000 

objective function evaluations in each run for Loney’s 
solenoid and the TEAM 22 benchmark, respectively. 
Furthermore, the λ candidate solutions in CMA-ES and 
DCMA-ES were set to 1, 10, 15, 20, 30, 40 and µ was kept 
to a constant value of 5 in the optimization results presented 
in Tables I to III. Table I and II also show results obtained 
with other algorithms as reported in [5] and [6], 
respectively.  

It can be noted that while the best optimum of CMA-ES 
is in line with the best solutions found with other algorithms 
the mean and worst case as well as the standard deviation 
are not very satisfactory. On the other hand DCMA-ES can 
is competitive with or superior to other modern 
metaheuristics (PSO) especially for the higher-dimensional 
problem .   

Furthermore, numerical results indicate that, for both 
benchmarks, an increase in λ does not correspond to better 
performance of the algorithm. 

Since some of the results appear not to be up to the 
expectations further tuning of the CMA-ES and DCMA-ES 
algorithms are currently being performed and will be 
reported in the extended version of the paper. 

 
 

 
 
 

TABLE I 
SIMULATION RESULTS FOR THE LONEY’S SOLENOID OF F IN 30 RUNS 

 
Optimization 

F(s, l)·10-8 

Method Maximum 
(Worst) 

Mean Minimum 
(Best) 

Standard 
Deviation 

CMA-ES (5+10) 181.3400 22.0281 2.1995 38.5613 
CMA-ES (5+15) 182.6919 24.5283 2.9372 45.7108 
CMA-ES (5+20) 189.0848 24.4562 2.3063 45.3809 
CMA-ES (5+30) 204.4167 25.4498 2.5812 49.9631 
CMA-ES (5+40) 188.2613 23.5840 2.7557 44.7445 
CMA-ES (1+15) 203.6377 24.0328 2.1074 49.5053 

DCMA-ES (1+15) 27.2143 7.3751 2.0571 8.5328 
Tribes (PSO) [5] 3.9526 3.4870 2.0574 0.5079 

  
TABLE II 

RESULTS (30 RUNS) FOR TEAM WORKSHOP PROBLEM 22  
Optimization Objective Function OF in 30 Runs 

Method Maximum 
(Worst) 

Mean Minimum 
(Best) 

Standard 
Deviation 

CMA-ES (5+10) 103.4412 29.4580 0.1445 42.7100 
CMA-ES (5+15) 103.4138 34.8530 0.3923 43.1912 
CMA-ES (5+20) 103.4490 35.2021 0.2851 40.6165 
CMA-ES (5+30) 104.7012 35.7487 0.7041 41.5678 
CMA-ES (5+40) 103.5270 37.7371 3.8371 38.7113 
CMA-ES (1+15) 103.5418 33.5382 0.5775 41.0632 

DCMA-ES (1+15) 28.5601 7.7832 0.2763 6.4914 
E-QPSO [6] 26.1900 7.9618 1.1730 5.4340 

V. CONCLUSION   
In this paper the performance of the standard CMA-ES 

and a novel DCMA-ES are tested on two well-known 
electromagnetic benchmark problems and compared with 
results obtained by other modern stochastic algorithms. The 
extended version will also include a thorough description of 
CMA-ES and DCMA-ES approaches and their 
implementation details. 
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